arXiv:2407.16408 [math.GN]AbstractReferencesReviewsResources
Set convergences and uniform convergence of distance functionals on a bornology
Published 2024-07-23Version 1
For a metric space $(X,d)$, Beer, Naimpally, and Rodriguez-Lopez in ([17]) proposed a unified approach to explore set convergences via uniform convergence of distance functionals on members of an arbitrary family $\mathcal{S}$ of subsets of $X$. The associated topology on the collection $CL(X)$ of all nonempty closed subsets of $(X,d)$ is denoted by $\tau_{\mathcal{S},d}$. As special cases, this unified approach includes classical Wijsman, Attouch-Wets, and Hausdorff distance topologies. In this article, we investigate various topological characteristics of the hyperspace $(CL(X), \tau_{\mathcal{S},d})$ when $\mathcal{S}$ is a bornology on $(X,d)$. In order to do this, a new class of bornologies and a new metric topology on $CL(X)$ have been introduced and studied.