arXiv:2407.11482 [math.NA]AbstractReferencesReviewsResources
An implementation of hp-FEM for the fractional Laplacian
Björn Bahr, Markus Faustmann, Jens Markus Melenk
Published 2024-07-16Version 1
We consider the discretization of the $1d$-integral Dirichlet fractional Laplacian by $hp$-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of $hp$-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is $\mathcal{O}(N^{5/2})$, where $N$ is the problem size. Numerical example illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for $hp$-finite element spaces based on shape regular meshes.