arXiv Analytics

Sign in

arXiv:2407.06865 [math.RT]AbstractReferencesReviewsResources

Affine $\imath$quantum groups and Steinberg varieties of type C

Changjian Su, Weiqiang Wang

Published 2024-07-09Version 1

We provide a geometric realization of the quasi-split affine $\imath$quantum group of type AIII$_{2n-1}^{(\tau)}$ in terms of equivariant K-groups of non-connected Steinberg varieties of type C. This uses a new Drinfeld type presentation of this affine $\imath$quantum group which admits very nontrivial Serre relations. We then construct \`a la Springer a family of finite-dimensional standard modules and irreducible modules of this $\imath$quantum group, and provide a composition multiplicity formula of the standard modules.

Related articles: Most relevant | Search more
arXiv:2102.03203 [math.RT] (Published 2021-02-05)
A Drinfeld type presentation of affine $\imath$quantum groups II: split BCFG type
arXiv:1810.12475 [math.RT] (Published 2018-10-30)
A Serre presentation for the $\imath$quantum groups
arXiv:1704.00166 [math.RT] (Published 2017-04-01)
Geometric realizations of Lusztig's symmetries on the whole quantum groups