arXiv Analytics

Sign in

arXiv:2407.04498 [math.AP]AbstractReferencesReviewsResources

Global dynamics for the generalized chemotaxis-Navier-Stokes system in $\mathbb{R}^3$

Qingyou He, Ling-Yun Shou, Leyun Wu

Published 2024-07-05Version 1

We consider the Cauchy problem of the three-dimensional generalized chemotaxis-Navier-Stokes system \begin{eqnarray*} \begin{cases} \partial_t n+u\cdot \nabla n=\Delta n- \nabla \cdot (\chi(c)n \nabla c),\\ \partial_t c+u \cdot \nabla c=\Delta c-nf(c),\\ \partial_t u +u \cdot \nabla u+\nabla P=-(-\Delta)^\alpha u-n\nabla \phi,\\ \nabla \cdot u=0. \end{cases} \end{eqnarray*} First, we study the time extensibility criteria of strong solutions, including the Prodi-Serrin type criterion ($\alpha>\frac{3}{4}$) and the Beir${\rm\tilde{a}}$o da Veiga type criterion $(\alpha>\frac{1}{2})$. Furthermore, with Lions' dissipation exponent $\alpha\geq \frac{5}{4}$, we verify the global existence and uniqueness of strong solutions for arbitrarily large initial fluid velocity and oxygen concentration. These results reflect the influence of the generalized dissipation for the solutions of the coupled chemotaxis-fluid equations. Finally, in the scenario of weaker dissipation ($\frac{3}{4}<\alpha<\frac{5}{4}$), we establish uniform regularity estimates for global strong solutions and further obtain optimal time-decay rates under the mild condition that the initial $L^2$ energy is small. To our knowledge, this is the first result concerning the global existence and large-time behavior of strong solutions for the three-dimensional chemotaxis-Navier-Stokes equations with possibly large oscillations.

Related articles: Most relevant | Search more
arXiv:0811.3966 [math.AP] (Published 2008-11-25, updated 2009-09-10)
Universality of global dynamics for the cubic wave equation
arXiv:math/0603656 [math.AP] (Published 2006-03-28)
Global existence versus blow up for some models of interacting particles
arXiv:1211.5866 [math.AP] (Published 2012-11-26, updated 2013-12-02)
Global Existence of Strong Solutions to Incompressible MHD