arXiv Analytics

Sign in

arXiv:2406.11165 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Tunable Fano and Dicke resonant tunneling of double quantum dots sandwiched between topological insulators

Yuan Hong, Zhen-Guo Fu, Zhou-Wei-Yu Chen, Feng Chi, Zhigang Wang, Wei Zhang, Ping Zhang

Published 2024-06-17Version 1

We study the resonant tunneling in double quantum dots (DQD) sandwiched between surfaces of topological insulator (TI) Bi$_2$Te$_3$, which possess strong spin-orbit coupling (SOC) and $^{d}C_{3v}$ double group symmetry. Distinct from the spin-conserved case with two-dimensional electron gas (2DEG) electrodes, the conductance displays an asymmetrical double-peak Fano-type lineshape rather than Dicke-type lineshape in the zero-field cases. While a Landau-Zener-like lineshape trajectory, which is identified as a signal of competition effect, could be developed by increasing the strength of interdot hopping. Furthermore, when applying an in-plane Zeeman field, we find that the conductance lineshape crossover between Fano and Dicke type could be driven by tilting the field orientation. Moreover, the rotational symmetry of the system could also be revealed from the lineshape trajectory. Our findings will contribute to a better understanding of the resonant tunneling in the presence of electrode SOC and may be confirmed experimentally in the future.

Related articles: Most relevant | Search more
arXiv:1003.0928 [cond-mat.mes-hall] (Published 2010-03-03)
Fast tunnel rates in Si/SiGe one-electron single and double quantum dots
arXiv:1301.1092 [cond-mat.mes-hall] (Published 2013-01-07)
Hot-carrier transport and spin relaxation on the surface of topological insulator
arXiv:cond-mat/0406490 (Published 2004-06-21)
Spin-Polarized Transprot through Double Quantum Dots