arXiv Analytics

Sign in

arXiv:2406.07311 [math.CO]AbstractReferencesReviewsResources

Pattern containment in random permutations

Jonna Gill

Published 2024-06-11Version 1

This paper studies permutation statistics that count occurrences of patterns. Their expected values on a product of $t$ permutations chosen randomly from $\Gamma \subseteq S_{n}$, where $\Gamma$ is a union of conjugacy classes, are considered. Hultman has described a method for computing such an expected value, denoted $\mathbb{E}_{\Gamma}(s,t)$, of a statistic $s$, when $\Gamma$ is a union of conjugacy classes of $S_{n}$. The only prerequisite is that the mean of $s$ over the conjugacy classes is written as a linear combination of irreducible characters of $S_{n}$. Therefore, the main focus of this article is to express the means of pattern-counting statistics as such linear combinations. A procedure for calculating such expressions for statistics counting occurrences of classical and vincular patterns of length 3 is developed, and is then used to calculate all these expressions. The results can be used to compute $\mathbb{E}_{\Gamma}(s,t)$ for all the above statistics, and for all functions on $S_{n}$ that are linear combinations of them.

Comments: This paper is a part of my PhD Thesis which was written 2013
Categories: math.CO
Subjects: 05A05
Related articles: Most relevant | Search more
arXiv:1011.5491 [math.CO] (Published 2010-11-24, updated 2011-09-05)
Shape and pattern containment of separable permutations
arXiv:2203.10826 [math.CO] (Published 2022-03-21)
Joint Probabilities within Random Permutations
arXiv:0704.1489 [math.CO] (Published 2007-04-11)
Where the monotone pattern (mostly) rules