arXiv Analytics

Sign in

arXiv:2406.01166 [math.CO]AbstractReferencesReviewsResources

Quasisymmetric expansion of Hall-Littlewood symmetric functions

Darij Grinberg, Ekaterina A. Vassilieva

Published 2024-06-03Version 1

In our previous works we introduced a $q$-deformation of the generating functions for enriched $P$-partitions. We call the evaluation of this generating functions on labelled chains, the $q$-fundamental quasisymmetric functions. These functions interpolate between Gessel's fundamental ($q=0$) and Stembridge's peak ($q=1$) functions, the natural quasisymmetric expansions of Schur and Schur's $Q$-symmetric functions. In this paper, we show that our $q$-fundamental functions provide a quasisymmetric expansion of Hall-Littlewood $S$-symmetric functions with parameter $t=-q$.

Comments: Extended abstract accepted for FPSAC 2024. Comments are welcome! 12 pages
Categories: math.CO
Subjects: 05E05, 06A11
Related articles: Most relevant | Search more
arXiv:1911.10430 [math.CO] (Published 2019-11-23)
On the product of generating functions for domino and bi-tableaux
arXiv:2411.13371 [math.CO] (Published 2024-11-20)
Fundamental quasisymmetric functions in superspace
arXiv:1411.3534 [math.CO] (Published 2014-11-13)
Matrix integrals and generating functions for enumerating rooted hypermaps by vertices, edges and faces for a given number of darts