arXiv:2405.19964 [math-ph]AbstractReferencesReviewsResources
A Proof of $\mathfrak{L}^2$-Boundedness for Magnetic Pseudodifferential Super Operators via Matrix Representations With Respect to Parseval Frames
Published 2024-05-30Version 1
A fundamental result in pseudodifferential theory is the Calder\'on-Vaillancourt theorem, which states that a pseudodifferential operator defined from a H\"ormander symbol of order $0$ defines a bounded operator on $L^2(\mathbb{R}^d)$. In this work we prove an analog for pseudodifferential \emph{super} operator, \ie operators acting on other operators, in the presence of magnetic fields. More precisely, we show that magnetic pseudodifferential super operators of order $0$ define bounded operators on the space of Hilbert-Schmidt operators $\mathfrak{L}^2 \bigl ( \mathcal{B} \bigl ( L^2(\mathbb{R}^d) \bigr ) \bigr )$. Our proof is inspired by the recent work of Cornean, Helffer and Purice and rests on a characterization of magnetic pseudodifferential super operators in terms of their "matrix element" computed with respect to a Parseval frame.