arXiv:2405.17118 [math.NT]AbstractReferencesReviewsResources
On $ψ$-lattices in modular $(\varphi,Γ)$-modules
Published 2024-05-27Version 1
Let $F/{\mathbb Q}_p$ be a finite field extension, let $k$ be a finite field extension of the residue field of $F$. Generalizing the $\psi$-lattices which Colmez constructed in \'{e}tale $(\varphi,\Gamma)$-modules over $k[[t]][t^{-1}]$, we define, study and exemplify $\psi$-lattices in \'{e}tale $(\varphi,\Gamma)$-modules over $k[[t_1,\ldots,t_d]][\prod_it_i^{-1}]$ for arbitrary $d\in{\mathbb N}$.
Comments: 14 pages
Journal: Perfectoid spaces, Springer, Singapore (2022), ISBN:978-981-16-7120-3
Categories: math.NT
Subjects: 11F80
Keywords: finite field extension, residue field
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1407.3647 [math.NT] (Published 2014-07-11)
A New Criterion on Normal Bases of Finite Field Extensions
arXiv:1801.06388 [math.NT] (Published 2018-01-19)
A note on multivariable $(\varphi,Γ)$-modules
The equivariant complexity of multiplication in finite field extensions