arXiv Analytics

Sign in

arXiv:2405.15573 [math.NA]AbstractReferencesReviewsResources

Uniform $\mathcal{H}$-matrix Compression with Applications to Boundary Integral Equations

Kobe Bruyninckx, Daan Huybrechs, Karl Meerbergen

Published 2024-05-24Version 1

Boundary integral equation formulations of elliptic partial differential equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in practice this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity.

Related articles: Most relevant | Search more
arXiv:1205.3157 [math.NA] (Published 2012-05-12)
Multi-Adaptive Galerkin Methods for ODEs II: Implementation and Applications
arXiv:math/0610736 [math.NA] (Published 2006-10-24)
Some Refinements of Discrete Jensen's Inequality and Some of Its Applications
arXiv:math/0703410 [math.NA] (Published 2007-03-14)
A Convergence Result for Asynchronous Algorithms and Applications