arXiv Analytics

Sign in

arXiv:2405.10761 [cond-mat.dis-nn]AbstractReferencesReviewsResources

Critical feature learning in deep neural networks

Kirsten Fischer, Javed Lindner, David Dahmen, Zohar Ringel, Michael Krämer, Moritz Helias

Published 2024-05-17Version 1

A key property of neural networks driving their success is their ability to learn features from data. Understanding feature learning from a theoretical viewpoint is an emerging field with many open questions. In this work we capture finite-width effects with a systematic theory of network kernels in deep non-linear neural networks. We show that the Bayesian prior of the network can be written in closed form as a superposition of Gaussian processes, whose kernels are distributed with a variance that depends inversely on the network width N . A large deviation approach, which is exact in the proportional limit for the number of data points $P = \alpha N \rightarrow \infty$, yields a pair of forward-backward equations for the maximum a posteriori kernels in all layers at once. We study their solutions perturbatively to demonstrate how the backward propagation across layers aligns kernels with the target. An alternative field-theoretic formulation shows that kernel adaptation of the Bayesian posterior at finite-width results from fluctuations in the prior: larger fluctuations correspond to a more flexible network prior and thus enable stronger adaptation to data. We thus find a bridge between the classical edge-of-chaos NNGP theory and feature learning, exposing an intricate interplay between criticality, response functions, and feature scale.

Comments: 31 pages, 7 figures, accepted at International Conference on Machine Learning 2024
Categories: cond-mat.dis-nn
Related articles: Most relevant | Search more
arXiv:2208.00349 [cond-mat.dis-nn] (Published 2022-07-31)
What Do Deep Neural Networks Find in Disordered Structures of Glasses?
arXiv:1802.09558 [cond-mat.dis-nn] (Published 2018-02-26)
Constructing exact representations of quantum many-body systems with deep neural networks
arXiv:1809.09349 [cond-mat.dis-nn] (Published 2018-09-25)
The jamming transition as a paradigm to understand the loss landscape of deep neural networks