arXiv Analytics

Sign in

arXiv:2405.04997 [cs.CV]AbstractReferencesReviewsResources

Bridging the Gap Between Saliency Prediction and Image Quality Assessment

Kirillov Alexey, Andrey Moskalenko, Dmitriy Vatolin

Published 2024-05-08, updated 2025-06-27Version 2

Over the past few years, deep neural models have made considerable advances in image quality assessment (IQA). However, the underlying reasons for their success remain unclear, owing to the complex nature of deep neural networks. IQA aims to describe how the human visual system (HVS) works and to create its efficient approximations. On the other hand, Saliency Prediction task aims to emulate HVS via determining areas of visual interest. Thus, we believe that saliency plays a crucial role in human perception. In this work, we conduct an empirical study that reveals the relation between IQA and Saliency Prediction tasks, demonstrating that the former incorporates knowledge of the latter. Moreover, we introduce a novel SACID dataset of saliency-aware compressed images and conduct a large-scale comparison of classic and neural-based IQA methods. All supplementary code and data will be available at the time of publication.

Related articles: Most relevant | Search more
arXiv:1605.08153 [cs.CV] (Published 2016-05-26)
DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies
arXiv:1709.03820 [cs.CV] (Published 2017-09-12)
Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers
arXiv:1703.07715 [cs.CV] (Published 2017-03-22)
Classifying Symmetrical Differences and Temporal Change in Mammography Using Deep Neural Networks