arXiv:2404.16485 [math.PR]AbstractReferencesReviewsResources
Concentration estimates for SPDEs driven by fractional Brownian motion
Nils Berglund, Alexandra Blessing
Published 2024-04-25Version 1
The main goal of this work is to provide sample-path estimates for the solution of slowly time-dependent SPDEs perturbed by a cylindrical fractional Brownian motion. Our strategy is similar to the approach by Berglund and Nader for space-time white noise. However, the setting of fractional Brownian motion does not allow us to use any martingale methods. Using instead optimal estimates for the probability that the supremum of a Gaussian process exceeds a certain level, we derive concentration estimates for the solution of the SPDE, provided that the Hurst index $H$ of the fractional Brownian motion satisfies $H>\frac14$. As a by-product, we also obtain concentration estimates for one-dimensional fractional SDEs valid for any $H\in(0,1)$.