arXiv:2404.15063 [math.NT]AbstractReferencesReviewsResources
On cyclotomic matrices involving Gauss sums over finite fields
Hai-Liang Wu, Jie Li, Li-Yuan Wang
Published 2024-04-23Version 1
Inspired by the Carlitz's work on cyclotomic matrices, in this paper, we investigate certain cyclotomic matrices involving Gauss sums over finite fields. For example, let $q=p^n$ be an odd prime power with $p$ prime and $n\in\mathbb{Z}^+$. Let $\zeta_p=e^{2\pi{\bf i}/p}$ and let $\chi$ be a generator of the group of all mutiplicative characters of the finite field $\mathbb{F}_q$. For the Gauss sum $$G_q(\chi^{r})=\sum_{x\in\mathbb{F}_q}\chi^{r}(x)\zeta_p^{{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)},$$ we prove that $$\det \left[G_q(\chi^{2i+2j})\right]_{0\le i,j\le (q-3)/2}=(-1)^{\alpha_p}\left(\frac{q-1}{2}\right)^{\frac{q-1}{2}}2^{\frac{p^{n-1}-1}{2}},$$ where $$\alpha_p=\begin{cases}1 & \mbox{if}\ n\equiv 1\pmod 2, (p^2+7)/8 & \mbox{if}\ n\equiv 0\pmod 2. \end{cases}$$