arXiv:2404.13155 [math.CO]AbstractReferencesReviewsResources
On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs
Ruy Fabila-Monroy, Rosna Paul, Jenifer Viafara-Chanchi, Alexandra Weinberger
Published 2024-04-19Version 1
A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let $n \ge r$ be positive integers. The graph $K_n^r$, is the complete $r$-partite graph on $n$ vertices, in which every set of the partition has at least $\lfloor n/r \rfloor$ vertices. The layered graph, $L_n^r$, is an $r$-partite graph on $n$ vertices, in which for every $1\le i \le r-1$, all the vertices in the $i$-th partition are adjacent to all the vertices in the $(i+1)$-th partition. In this paper, we give upper bounds on the rectilinear crossing numbers of $K_n^r$ and~$L_n^r$.