arXiv:2404.05813 [math.FA]AbstractReferencesReviewsResources
A linear operator bounded in all Besov but not in Triebel-Lizorkin spaces
Published 2024-04-08Version 1
We construct a linear operator $T:\mathscr S'(\mathbb R^n)\to \mathscr S'(\mathbb R^n)$ such that $T:\mathscr B_{pq}^s(\mathbb R^n)\to\mathscr B_{pq}^s(\mathbb R^n)$ for all $0<p,q\le\infty$ and $s\in\mathbb R$, but $T(\mathscr F_{pq}^s(\mathbb R^n))\not\subset \mathscr F_{pq}^s(\mathbb R^n)$ unless $p=q$. As a result Triebel-Lizorkin spaces cannot be interpolated from Besov spaces unless $p=q$.
Comments: 9 pages
Related articles: Most relevant | Search more
arXiv:math/0011232 [math.FA] (Published 2000-11-28)
Coordinate restrictions of linear operators in $l_2^n$
arXiv:2405.19579 [math.FA] (Published 2024-05-30)
Duality between Y-convexity and $Y^{\times}$-concavity of linear operators between Banach lattices
arXiv:1204.2044 [math.FA] (Published 2012-04-10)
Linear operators with wild dynamics