arXiv Analytics

Sign in

arXiv:2404.00468 [math.LO]AbstractReferencesReviewsResources

On P=NP Either False or Independent of ZFC

S Gill Williamson

Published 2024-03-30Version 1

Our main result, Theorem 3.3, uses Friedman's Jump Free Theorem, Theorem 2.7, which he has shown to be independent of ZFC, the usual axioms of set theory. We conjecture that Theorem 3.3, a straight forward translation of the statement of Theorem 2.7 into sets and functions, is also independent of ZFC as is its immediate Corollary 3.4. It is easy to show that a proof that P=NP will also prove Corollary 3.4. If Corollary 3.4 is in fact independent of ZFC then a ZFC proof of P=NP is impossible, perhaps because it is false.

Related articles: Most relevant | Search more
arXiv:1109.1601 [math.LO] (Published 2011-09-07, updated 2011-12-29)
Additivity of the dp-rank
arXiv:1006.3816 [math.LO] (Published 2010-06-18, updated 2010-12-21)
On strongly summable ultrafilters
arXiv:1012.4532 [math.LO] (Published 2010-12-21, updated 2011-02-15)
On union ultrafilters