arXiv:2403.16322 [math.GT]AbstractReferencesReviewsResources
On the mapping class group action on the homology of surface covers
Published 2024-03-24Version 1
Let $\phi \in {\rm Mod}(\Sigma)$ be an arbitrary element of the mapping class group of a closed orientable surface $\Sigma$ of genus at least $2$. For any characteristic cover $\widetilde{\Sigma} \to \Sigma$ one can consider the linear subspace ${\rm H}_1^{f.o.}(\widetilde{\Sigma}, \mathbb{Q})^\phi \subseteq {\rm H}_1(\widetilde{\Sigma}, \mathbb{Q})$ consisting of all homology classes with finite $\phi$-orbit. We prove that $\dim {\rm H}_1^{f.o.}(\widetilde{\Sigma}, \mathbb{Q})^\phi$ can be arbitrary large for any fixed $\phi \in {\rm Mod}(\Sigma)$.
Comments: 11 pages, 2 figures
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:2206.11475 [math.GT] (Published 2022-06-23)
Weakly framed surface configurations, Heisenberg homology and Mapping Class Group action
Dynamics of the mapping class group action on the variety of PSL(2,C) characters
arXiv:2502.09513 [math.GT] (Published 2025-02-13)
On dynamics of the Mapping class group action on relative $\text{PSL}(2,\mathbb{R})$-Character Varieties