arXiv Analytics

Sign in

arXiv:2403.15645 [math.CO]AbstractReferencesReviewsResources

Mutual-visibility problems in Kneser and Johnson graphs

Gülnaz Boruzanli Ekinci, Csilla Bujtás

Published 2024-03-22Version 1

Let $G$ be a connected graph and $\cal X \subseteq V(G)$. By definition, two vertices $u$ and $v$ are $\cal X$-visible in $G$ if there exists a shortest $u,v$-path with all internal vertices being outside of the set $\cal X$. The largest size of $\cal X$ such that any two vertices of $G$ (resp. any two vertices from $\cal X$) are $\cal X$-visible is the total mutual-visibility number (resp. the mutual-visibility number) of $G$. In this paper, we determine the total mutual-visibility number of Kneser graphs, bipartite Kneser graphs, and Johnson graphs. The formulas proved for Kneser, and bipartite Kneser graphs are related to the size of transversal-critical uniform hypergraphs, while the total mutual-visibility number of Johnson graphs is equal to a hypergraph Tur\'an number. Exact values or estimations for the mutual-visibility number over these graph classes are also established.

Related articles: Most relevant | Search more
arXiv:2304.00864 [math.CO] (Published 2023-04-03)
Variety of mutual-visibility problems in graphs
arXiv:2106.02438 [math.CO] (Published 2021-06-04)
New Turan-type bounds for Johnson graphs
arXiv:2407.07851 [math.CO] (Published 2024-07-10)
Edge and mixed metric dimension of Johnson graphs