arXiv:2403.13149 [math.CA]AbstractReferencesReviewsResources
Bernstein-Nikolskii Inequality: Optimality with Respect to the Smoothness Parameter
Michael I Ganzburg, Miquel Saucedo, Sergey Tikhonov
Published 2024-03-19Version 1
In this paper, we study the form of the constant $C$ in the Bernstein--Nikolskii inequalities $\|f^{(s)}\|_q \lesssim C(s, p, q)\left\|f\right\|_p,\,0<p<q \leq\infty$, for trigonometric polynomials and entire functions of exponential type. We obtain the optimal behavior of the constant with respect to the smoothness parameter $s$.
Comments: 22 pages
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:0811.0686 [math.CA] (Published 2008-11-05)
$L$-approximation of $B$-splines by trigonometric polynomials
arXiv:1705.03759 [math.CA] (Published 2017-05-06)
Extension of Vietoris' inequalities for positivity of trigonometric polynomials
arXiv:1704.06056 [math.CA] (Published 2017-04-20)
On approximations by trigonometric polynomials of classes of functions defined by moduli of smoothness