arXiv Analytics

Sign in

arXiv:2403.05372 [math.PR]AbstractReferencesReviewsResources

Limit Laws for Critical Dispersion on Complete Graphs

Umberto De Ambroggio, Tamás Makai, Konstantinos Panagiotou, Annika Steibel

Published 2024-03-08Version 1

We consider a synchronous process of particles moving on the vertices of a graph $G$, introduced by Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially, $M$ particles are placed on a vertex of $G$. In subsequent time steps, all particles that are located on a vertex inhabited by at least two particles jump independently to a neighbour chosen uniformly at random. The process ends at the first step when no vertex is inhabited by more than one particle; we call this (random) time step the dispersion time. In this work we study the case where $G$ is the complete graph on $n$ vertices and the number of particles is $M=n/2+\alpha n^{1/2} + o(n^{1/2})$, $\alpha\in \mathbb{R}$. This choice of $M$ corresponds to the critical window of the process, with respect to the dispersion time. We show that the dispersion time, if rescaled by $n^{-1/2}$, converges in $p$-th mean, as $n\rightarrow \infty$ and for any $p \in \mathbb{R}$, to a continuous and almost surely positive random variable $T_\alpha$. We find that $T_\alpha$ is the absorption time of a standard logistic branching process, thoroughly investigated by Lambert (2005), and we determine its expectation. In particular, in the middle of the critical window we show that $\mathbb{E}[T_0] = \pi^{3/2}/\sqrt{7}$, and furthermore we formulate explicit asymptotics when $|\alpha|$ gets large that quantify the transition into and out of the critical window. We also study the random variable counting the total number of jumps that are performed by the particles until the dispersion time is reached and prove that, if rescaled by $n\ln n$, it converges to $2/7$ in probability.

Comments: 30 pages 2 figures
Categories: math.PR, cs.DM, math.CO
Related articles: Most relevant | Search more
arXiv:2306.02474 [math.PR] (Published 2023-06-04)
Dispersion on the Complete Graph
arXiv:2003.10762 [math.PR] (Published 2020-03-24)
Asymptotics for Push on the Complete Graph
arXiv:1908.09406 [math.PR] (Published 2019-08-25)
Mixing time and cutoff phenomenon for the interchange process on dumbbell graphs and the labelled exclusion process on the complete graph