arXiv Analytics

Sign in

arXiv:2403.04938 [astro-ph.HE]AbstractReferencesReviewsResources

Deep-Learning Classification and Parameter Inference of Rotational Core-Collapse Supernovae

Solange Nunes, Gabriel Escrig, Osvaldo G. Freitas, José A. Font, Tiago Fernandes, Antonio Onofre, Alejandro Torres-Forné

Published 2024-03-07Version 1

We test Deep-Learning (DL) techniques for the analysis of rotational core-collapse supernovae (CCSN) gravitational-wave (GW) signals by performing classification and parameter inference of the GW strain amplitude ($D \cdot \Delta h $) and the maximum (peak) frequency $(f_\textrm{peak})$, attained at core bounce. Our datasets are built from a catalog of numerically generated CCSN waveforms assembled by Richers 2017. Those waveforms are injected into noise from the Advanced LIGO and Advanced Virgo detectors corresponding to the O2 and O3a observing runs. For a signal-to-noise ratio (SNR) above 5, our classification network using time series detects Galactic CCSN GW signals buried in detector noise with a false positive rate (FPR) of 0.10% and a 98% accuracy, being able to detect all signals with SNR>10. The inference of $f_\textrm{peak}$ is more accurate than for $D \cdot \Delta h $, particularly for our datasets with the shortest time window (0.25 s) and for a minimum SNR=15. From the calibration plots of predicted versus true values of the two parameters, the standard deviation ($\sigma$) and the slope deviation with respect to the ideal value are computed. We find $\sigma_{D \cdot \Delta h}$ = 52.6cm and $\sigma_{f_\textrm{peak}}$ = 18.3Hz, with respective slope deviations of 11.6% and 8.3%. Our best model is also tested on waveforms from a recent CCSN catalog built by Mitra 2023, different from the one used for the training. For these new waveforms the true values of the two parameters are mostly within the 1$\sigma$ band around the network's predicted values. Our results show that DL techniques hold promise to infer physical parameters of Galactic rotational CCSN even in the presence of real (non-Gaussian) noise conditions from current GW detectors.

Related articles: Most relevant | Search more
arXiv:1404.2646 [astro-ph.HE] (Published 2014-04-09, updated 2014-07-05)
Critical Surface for Explosions of Rotational Core-Collapse Supernovae
arXiv:2407.08719 [astro-ph.HE] (Published 2024-07-11)
The Impact of Astrophysical Priors on Parameter Inference for GW230529
arXiv:2412.12283 [astro-ph.HE] (Published 2024-12-16)
Uncovering Correlations and Biases in Parameter Inference from Neutron-Star Pulse Profile Modeling