arXiv:2403.02874 [astro-ph.HE]AbstractReferencesReviewsResources
The bright black hole X-ray binary 4U 1543-47 during 2021 outburst. A clear state transition from super-Eddington to sub-Eddington accretion revealed by Insight-HXMT
Pei Jin, Guobao Zhang, Yuexin Zhang, Mariano Méndez, Jinlu Qu, David M. Russell, Jiancheng Wang, Shuangnan Zhang, Yi-Jung Yang, Shumei Jia, Zixu Yang, Hexin Liu
Published 2024-03-05Version 1
We present a detailed analysis of the observations with the Hard X-ray Modulation Telescope of the black hole X-ray transient 4U~1543-47 during its outburst in 2021. We find a clear state transition during the outburst decay of the source. Using previous measurements of the black-hole mass and distance to the source, the source luminosity during this transition is close to the Eddington limit. The light curves before and after the transition can be fitted by two exponential functions with short ($\sim 16$ days) and long ($\sim 130$ days) decay time scales, respectively. We detect strong reflection features in all observations that can be described with either the RelxillNS or Reflionx_bb reflection models, both of which have a black-body incident spectrum. In the super-Eddington state, we observe a Comptonized component characterized by a low electron temperature of approximately 2.0 keV. We suggest that this component appears exclusively within the inner radiation-pressure dominated region of the supercritical disk as a part of the intrinsic spectrum of the accretion disk itself. This feature vanishes as the source transitions into the sub-Eddington state. The emissivity index of the accretion disk in the reflection component is significantly different before and after the transition, $\sim3.0$-$5.0$ and $\sim7.0$-$9.0$ in the super- and sub-Eddington states, respectively. Based on the reflection geometry of returning disk radiation, the geometrically thicker the accretion disk, the smaller the emissivity index. Therefore, we propose that the transition is primarily driven by the change of the accretion flow from a supercritical to a thin disk configuration.