arXiv:2402.16357 [math.NT]AbstractReferencesReviewsResources
Linear recurrent sequences providing decomposition law in number fields
Published 2024-02-26, updated 2024-09-02Version 2
In their recent paper, Rosen, Takeyama, Tasaka, and Yamamoto constructed recurrent sequences providing a decomposition law of primes in a Galois extension. In this paper, we reconstruct their sequences via representation theory of finite groups and obtain an explicit description of the sequences.
Comments: 16 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1404.0266 [math.NT] (Published 2014-04-01)
A database of number fields
arXiv:1409.6455 [math.NT] (Published 2014-09-23)
Writing pi as sum of arctangents with linear recurrent sequences, Golden mean and Lucas numbers
Principalization of ideals in abelian extensions of number fields