arXiv:2402.07136 [math.LO]AbstractReferencesReviewsResources
On the $Π^1_2$ consequences of $Π^1_1$-$\mathsf{CA}_0$
Published 2024-02-11, updated 2024-11-22Version 2
In this paper, we introduce a hierarchy dividing the set $\{\sigma \in \Pi^1_2 : \Pi^1_1$-$\mathsf{CA}_0 \vdash \sigma\}$. Then, we give some characterizations of this set using weaker variants of some principles equivalent to $\Pi^1_1$-$\mathsf{CA}_0$: leftmost path principle, Ramsey's theorem for $\Sigma^0_n$ classes of $[\mathbb{N}]^{\mathbb{N}}$ and determinacy for $(\Sigma^0_1)_n$ classes of $\mathbb{N}^{\mathbb{N}}$.
Categories: math.LO
Related articles: Most relevant | Search more
arXiv:1711.08704 [math.LO] (Published 2017-11-23)
The strength of Ramsey's theorem for pairs and arbitrary many colors
arXiv:1302.0828 [math.LO] (Published 2013-02-04)
Separating principles below Ramsey's Theorem for Pairs
Conservation of Ramsey's theorem for pairs and well-foundedness