arXiv Analytics

Sign in

arXiv:2402.05935 [cs.CV]AbstractReferencesReviewsResources

SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models

Peng Gao, Renrui Zhang, Chris Liu, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao, Shijie Geng, Ziyi Lin, Peng Jin, Kaipeng Zhang, Wenqi Shao, Chao Xu, Conghui He, Junjun He, Hao Shao, Pan Lu, Hongsheng Li, Yu Qiao

Published 2024-02-08Version 1

We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory

Comments: Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
Categories: cs.CV, cs.AI, cs.CL, cs.LG
Related articles: Most relevant | Search more
arXiv:2501.15140 [cs.CV] (Published 2025-01-25)
Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models
arXiv:2408.16213 [cs.CV] (Published 2024-08-29)
M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation
arXiv:2402.14683 [cs.CV] (Published 2024-02-22, updated 2024-06-16)
Visual Hallucinations of Multi-modal Large Language Models