arXiv Analytics

Sign in

arXiv:2401.10385 [math.NA]AbstractReferencesReviewsResources

Approximation of Solution Operators for High-dimensional PDEs

Nathan Gaby, Xiaojing Ye

Published 2024-01-18Version 1

We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations (PDEs), particularly in high-dimensions. By employing a general reduced-order model, such as a deep neural network, we connect the evolution of the model parameters with trajectories in a corresponding function space. Using the computational technique of neural ordinary differential equation, we learn the control over the parameter space such that from any initial starting point, the controlled trajectories closely approximate the solutions to the PDE. Approximation accuracy is justified for a general class of second-order nonlinear PDEs. Numerical results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations. These are demonstrated to show the accuracy and efficiency of the proposed method.

Related articles: Most relevant | Search more
arXiv:0805.3999 [math.NA] (Published 2008-05-26, updated 2009-04-02)
The Relation between Approximation in Distribution and Shadowing in Molecular Dynamics
arXiv:1310.5093 [math.NA] (Published 2013-10-18)
Approximation by Baskakov quasi-interpolants
arXiv:1307.4245 [math.NA] (Published 2013-07-16, updated 2013-11-25)
Barycentric Padé approximation