arXiv Analytics

Sign in

arXiv:2401.08062 [astro-ph.SR]AbstractReferencesReviewsResources

Extended Main Sequences in Star Clusters

Chengyuan Li, Antonino P. Milone, Weijia Sun, Richard de Grijs

Published 2024-01-16Version 1

Extended main sequences (eMSs) and extended main-sequence turnoffs (eMSTOs) are fascinating phenomena that are routinely observed in star clusters. These phenomena strongly challenge the current canonical "simple stellar population" picture of star clusters, which postulates that star clusters are coeval and chemically homogeneous and can thus be described by a single, unique isochrone. Detections of eMSs and eMSTOs provide valuable insights into stellar physics and the evolution of star clusters. This comprehensive review delves into the observational characteristics, underlying mechanisms, and astrophysical implications of the eMSs and eMSTOs observed in young (less than 600 million years) and intermediate-age (600 to 2000 million years) star clusters. Several scenarios or hypotheses have been proposed to explain these phenomena, including the presence of an age spread, binary interactions, variable stars, and differences in stellar rotation rates. This review discusses the advantages and limitations of current models. Among contemporary models and hypotheses, stellar rotation has been demonstrated as the most plausible mechanism to explain the occurrence of eMSs and eMSTOs. Research on stellar rotation and its connection to eMSs has opened up a myriad of fascinating avenues, such as investigations of the magnetic braking mechanism in stars, searches for tidally locked binary systems in star clusters, and investigations as to whether binary mergers can give rise to massive magnetars. These endeavors have yielded valuable insights and significantly enriched our understanding of stellar astrophysics.

Comments: 37 pages, 7 figures. Fundamental Research (invited review)
Categories: astro-ph.SR, astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1702.03299 [astro-ph.SR] (Published 2017-02-10)
The Early Evolution of Star Clusters in Compressive and Extensive Tidal Fields
arXiv:2212.09685 [astro-ph.SR] (Published 2022-12-19)
The VISCACHA survey -- VI. Dimensional study of the structure of 82 star clusters in the Magellanic Clouds
arXiv:0909.2619 [astro-ph.SR] (Published 2009-09-14, updated 2009-10-14)
Tidal Tails of Star Clusters