arXiv Analytics

Sign in

arXiv:2401.04566 [math.PR]AbstractReferencesReviewsResources

Invariant measures for a class of stochastic third grade fluid equations in $2D$ and $3D$ bounded domains

Yassine Tahraoui, Fernanda Cipriano

Published 2024-01-09Version 1

This work aims to investigate the well-posedness and the existence of ergodic invariant measures for a class of third grade fluid equations in bounded domain $D\subset\mathbb{R}^d,d=2,3,$ in the presence of a multiplicative noise. First, we show the existence of a martingale solution by coupling a stochastic compactness and monotonicity arguments. Then, we prove a stabilty result, which gives the pathwise uniqueness of the solution and therefore the existence of strong probabilistic solution. Secondly, we use the stability result to show that the associated semigroup is Feller and by using "Krylov-Bogoliubov Theorem" we get the existence of an invariant probability measure. Finally, we show that all the invariant measures are concentrated on a compact subset of $L^2$, which leads to the existence of an ergodic invariant measure.

Related articles: Most relevant | Search more
arXiv:2302.05672 [math.PR] (Published 2023-02-11)
Local strong solutions to the stochastic third grade fluid equations with Navier boundary conditions
arXiv:2107.10104 [math.PR] (Published 2021-07-21)
Hilbert--Schmidt regularity of symmetric integral operators on bounded domains with applications to SPDE approximations
arXiv:2208.02136 [math.PR] (Published 2022-08-03)
On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D