arXiv:2401.04193 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Schrödinger cats escape confinement
Published 2024-01-08Version 1
We consider local quenches from initial states generated by a single spin flip in either the true or the false vacuum state of the confining quantum Ising spin chain in the ferromagnetic regime. Contrary to global quenches, where the light-cone behaviour is strongly suppressed, we find a significant light-cone signal propagating with a nonzero velocity besides the expected localised oscillating component. Combining an analytic representation of the initial state with a numerical description of the relevant excitations using the two-fermion approximation, we can construct the spectrum of post-quench excitations and their overlaps with the initial state, identifying the underlying mechanism. For confining quenches built upon the true vacuum, the propagating signal consists of Schr{\"o}dinger cats of left and right-moving mesons escaping confinement. In contrast, for anti-confining quenches built upon the false vacuum, it is composed of Schr{\"o}dinger cats of left and right-moving bubbles which escape Wannier-Stark localisation.