arXiv Analytics

Sign in

arXiv:2312.16583 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Limitations on the maximal level of entanglement of two singlet-triplet qubits in GaAs quantum dots

Igor Bragar, Łukasz Cywiński

Published 2023-12-27Version 1

We analyze in detail a procedure of entangling of two singlet-triplet ($S$-$T_{0}$) qubits operated in a regime when energy associated with the magnetic field gradient, $\Delta B_{z}$, is an order of magnitude smaller than the exchange energy, $J$, between singlet and triplet states [Shulman M. et al., Science 336, 202 (2012)]. We have studied theoretically a single $S$-$T_{0}$ qubit in free induction decay and spin echo experiments. We have obtained analytical expressions for time dependence of components of its Bloch vector for quasistatical fluctuations of $\Delta B_{z}$ and quasistatical or dynamical $1/f^{\beta}$-type fluctuations of $J$. We have then considered the impact of fluctuations of these parameters on the efficiency of the entangling procedure which uses an Ising-type coupling between two $S$-$T_{0}$ qubits. Particularly, we have obtained an analytical expression for evolution of two qubits affected by $1/f^{\beta}$-type fluctuations of $J$. This expression indicates the maximal level of entanglement that can be generated by performing the entangling procedure. Our results deliver also an evidence that in the above-mentioned experiment, the $S$-$T_{0}$ qubits were affected by uncorrelated $1/f^{\beta}$ charge noises.

Comments: 13 pages + appendices
Related articles: Most relevant | Search more
arXiv:1409.6521 [cond-mat.mes-hall] (Published 2014-09-23)
Influence of Hyperfine Interaction on the Entanglement of Photons Generated by Biexciton Recombination
arXiv:1210.0665 [cond-mat.mes-hall] (Published 2012-10-02, updated 2013-08-19)
Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling
arXiv:cond-mat/0206396 (Published 2002-06-21)
Entanglement of solid-state qubits by measurement