arXiv Analytics

Sign in

arXiv:2312.01963 [math.NA]AbstractReferencesReviewsResources

Model Reduction on Manifolds: A differential geometric framework

Patrick Buchfink, Silke Glas, Bernard Haasdonk, Benjamin Unger

Published 2023-12-04Version 1

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.

Related articles: Most relevant | Search more
arXiv:1603.05722 [math.NA] (Published 2016-03-17)
Model Order Reduction via POD-DEIM for the Estimation of Cardiac Conductivities
arXiv:1609.08821 [math.NA] (Published 2016-09-28)
Model Reduction from Partial Observations
arXiv:1906.05188 [math.NA] (Published 2019-06-12)
Model Order Reduction by Proper Orthogonal Decomposition