arXiv Analytics

Sign in

arXiv:2311.12648 [astro-ph.SR]AbstractReferencesReviewsResources

Dynamics of the tachocline

Antoine Strugarek, Bernadett Belucz, Allan Sacha Brun, Mausumi Dikpati, Gustavo Guerrero

Published 2023-11-21Version 1

The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5\% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilies that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.

Comments: 46 pages, 10 figures, accepted for publication in Space Science Reviews
Categories: astro-ph.SR
Related articles: Most relevant | Search more
arXiv:1903.04585 [astro-ph.SR] (Published 2019-03-11)
Cool, evolved stars: results, challenges, and promises for the next decade
Gioia Rau et al.
arXiv:1104.4658 [astro-ph.SR] (Published 2011-04-24)
On Limiting the Thickness of the Solar Tachocline
arXiv:1801.02565 [astro-ph.SR] (Published 2018-01-08)
A self-consistent model of the solar tachocline