arXiv:2311.00817 [math.GT]AbstractReferencesReviewsResources
Using the HOMFLY-PT polynomial to compute knot types
Eric J. Rawdon, Robert G. Scharein
Published 2023-11-01Version 1
The HOMFLY-PT polynomial is a link invariant which is effective in determining chiral knot and link types with small crossing numbers. In this chapter, we concentrate on knots. We provide a guide for computing the knot types of configurations from 3D coordinates via the HOMFLY-PT polynomial using publicly-available Linux freeware. We include data on the efficacy of HOMFLY-PT for knot types through crossing number 16.
Related articles: Most relevant | Search more
Quantum (sl_n, \land V_n) link invariant and matrix factorizations
arXiv:2404.09283 [math.GT] (Published 2024-04-14)
Pairs of knot invariants
arXiv:math/0612781 [math.GT] (Published 2006-12-27)
All Link Invariants for Two Dimensional Solutions of Yang-Baxter Equation and Dressings