arXiv:2310.14789 [math.FA]AbstractReferencesReviewsResources
Unital positive Schur multipliers on $S_n^p$ with a completely isometric dilation
Published 2023-10-23Version 1
Let $1<p\not=2<\infty$ and let $S^p_n$ be the associated Schatten von Neumann class over $n\times n$ matrices. We prove new characterizations of unital positive Schur multipliers $S^p_n\to S^p_n$ which can be dilated into an invertible complete isometry acting on a non-commutative $L^p$-space. Then we investigate the infinite dimensional case.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:math/0603186 [math.FA] (Published 2006-03-08)
Extension of Bernstein Polynomials to Infinite Dimensional Case
arXiv:2004.12610 [math.FA] (Published 2020-04-27)
Isometric dilations of commuting contractions and Brehmer positivity
arXiv:1906.02270 [math.FA] (Published 2019-06-05)
Holomorphic functions with large cluster sets