arXiv Analytics

Sign in

arXiv:2310.11098 [math.NT]AbstractReferencesReviewsResources

On Greenberg--Benois $\mathcal{L}$-invariants and Fontaine--Mazur $\mathcal{L}$-invariants

Ju-Feng Wu

Published 2023-10-17Version 1

We prove a comparison theorem between Greenberg--Benois $\mathcal{L}$-invariants and Fontaine--Mazur $\mathcal{L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser--de Shalit.

Categories: math.NT
Subjects: 11F80, 11R34, 11S25, 11R23
Related articles: Most relevant | Search more
arXiv:2205.09719 [math.NT] (Published 2022-05-19)
$\mathscr{L}$-invariants of Artin motives
arXiv:2210.01381 [math.NT] (Published 2022-10-04)
On generalization of Breuil--Schraen's $\mathscr{L}$-invariants to $\mathrm{GL}_n$
arXiv:1404.5700 [math.NT] (Published 2014-04-23)
On invariants of elliptic curves on average