arXiv:2310.07214 [math.CO]AbstractReferencesReviewsResources
Borodin-Kostochka Conjecture holds for odd-hole-free graphs
Rong Chen, Kaiyang Lan, Xinheng Lin, Yidong Zhou
Published 2023-10-11Version 1
The Borodin-Kostochka Conjecture states that for a graph $G$, if $\Delta(G)\geq 9$, then $\chi(G)\leq\max\{\Delta(G)-1,\omega(G)\}$. In this paper, we prove the Borodin-Kostochka Conjecture holding for odd-hole-free graphs.
Comments: Submitted
Categories: math.CO
Related articles:
arXiv:2405.18455 [math.CO] (Published 2024-05-28)
Coloring some $(P_6,C_4)$-free graphs with $Δ-1$ colors
arXiv:2006.02015 [math.CO] (Published 2020-06-03)
Coloring $(P_5, \text{gem})$-free graphs with $Δ-1$ colors