arXiv Analytics

Sign in

arXiv:2310.02175 [math-ph]AbstractReferencesReviewsResources

New Spectral Properties of Imaginary part of Gribov-Intissar Operator

Abdelkader Intissar

Published 2023-10-03Version 1

In 1998, we have given in ([14] Intissar, A., Analyse de Scattering d'un op\'erateur cubique de Heun dans l'espace de Bargmann, Comm.Math.Phys.199 (1998) 243-256) the boundary conditions at infinity for a description of all maximal dissipative extensions in Bargmann space of the minimal Heun's operator $H_I = z(\frac{d}{dz} + z)\frac{d}{dz}$; $z \in \mathbb{C}$. The characteristic functions of the dissipative extensions have computed and some completeness theorems have obtained for the system of generalized eigenvectors. In ([18] Intissar, A, Le Bellac, M. and Zerner, M., Properties of the Hamiltonian of Reggeon field theory, Phys. Lett. B 113 (1982) 487-489) the non self-adjoint operator $\lambda H_{I}$ where $\lambda \in \mathbb{R}$ is imaginary part of the Hamiltonian of Reggeon field theory: $$H_{\mu, \lambda} = \mu z\frac{d}{dz} + i \lambda z( \frac{d}{dz} + z)\frac{d}{dz} \,\, \text{where} \,\, (\mu, \lambda) \in \mathbb{R}^{2} \,\, \text{and} \,\, i^{2} = -1$$ The main purpose of the present work is to present some new spectral properties of right inverse $K_{0, \lambda}$ of $H_{\lambda} = i\lambda H_I$ ($H_{\lambda}K_{0, \lambda} = I$) on negative imaginary axis and to study the deficiency numbers of the generalized Heun's operator $H^{p,m} = z^{p}( \frac{d^{m}}{dz^{m}} + z^{m})\frac{d^{p}}{dz^{p}}$ $p, m = 1, 2, ....$. In particular, here we find some conditions on the parameters $p$ and $m$ for that $H_{I}^{p,m}$ to be completely indeterminate.It follows from these conditions that $H^{p,m}$ is entire of the type minimal.

Related articles: Most relevant | Search more
arXiv:1510.01860 [math-ph] (Published 2015-10-07)
Spectral properties of some Jacobi operators
arXiv:1009.4039 [math-ph] (Published 2010-09-21, updated 2011-06-18)
Spectral Properties of Grain Boundaries at Small Angles of Rotation
arXiv:0911.0116 [math-ph] (Published 2009-10-31, updated 2011-08-04)
Spectral properties of the renormalization group at infinite temperature