arXiv Analytics

Sign in

arXiv:2308.16431 [math.DS]AbstractReferencesReviewsResources

Using a library of chemical reactions to fit systems of ordinary differential equations to agent-based models: a machine learning approach

Pamela M. Burrage, Hasitha N. Weerasinghe, Kevin Burrage

Published 2023-08-31Version 1

In this paper we introduce a new method based on a library of chemical reactions for constructing a system of ordinary differential equations from stochastic simulations arising from an agent-based model. The advantage of this approach is that this library respects any coupling between systems components, whereas the SINDy algorithm (introduced by Brunton, Proctor and Kutz) treats the individual components as decoupled from one another. Another advantage of our approach is that we can use a non-negative least squares algorithm to find the non-negative rate constants in a very robust, stable and simple manner. We illustrate our ideas on an agent-based model of tumour growth on a 2D lattice.

Related articles: Most relevant | Search more
arXiv:1406.4111 [math.DS] (Published 2014-06-11)
Side conditions for ordinary differential equations
arXiv:math/0104215 [math.DS] (Published 2001-04-24)
A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations
arXiv:2303.14815 [math.DS] (Published 2023-03-26)
Mapping dynamical systems with distributed time delays to sets of ordinary differential equations