arXiv Analytics

Sign in

arXiv:2308.16387 [math.AP]AbstractReferencesReviewsResources

Stability and instability for compressible Navier-Stokes equations with Yukawa potential

Juanzi Cai, Zhiang Wu, Guochun Wu

Published 2023-08-31Version 1

In this paper, we first consider global well-posedness and long time behavior of compressible Navier-Stokes equations with Yukawa-type potential in $L^p$-framework under the stability condition $P'(\bar\rho)+\gamma\bar\rho>0$. Here $\bar\rho>0$ is the background density, P is the pressure and $\gamma\in\mathbb{R}$ is Yukawa coefficient. This is a continuity work of Chikami \cite{chikami1} concerning on local existence and blow-up criterion. On the other hand, we study the instability of the linear and nonlinear problem of the system when $P'(\bar\rho)+\gamma\bar\rho<0$ in the Hadamard sense.

Related articles: Most relevant | Search more
arXiv:1911.07948 [math.AP] (Published 2019-11-18)
Inviscid limit of the compressible Navier-Stokes equations for asymptotically isothermal gases
arXiv:1001.1247 [math.AP] (Published 2010-01-08)
A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations
arXiv:2405.11900 [math.AP] (Published 2024-05-20)
Global-in-time well-posedness of the compressible Navier-Stokes equations with striated density