arXiv Analytics

Sign in

arXiv:2308.13942 [math.LO]AbstractReferencesReviewsResources

When does $\aleph_1$-categoricity imply $ω$-stability?

John T. Baldwin, M. C. Laskowski, Saharon Shelah

Published 2023-08-26Version 1

For an $\aleph_1$-categorical atomic class, we clarify the space of types over the unique model of size $\aleph_1$. Using these results, we prove that if such a class has a model of size $\beth_1^+$ then it is $\omega$-stable.

Comments: 22 pages
Categories: math.LO
Subjects: 03C45
Related articles: Most relevant | Search more
arXiv:0808.3023 [math.LO] (Published 2008-08-22)
Categoricity and solvability of A.E.C., quite highly
arXiv:1506.03066 [math.LO] (Published 2015-06-09)
Degrees of categoricity on a cone
arXiv:math/9201240 [math.LO] (Published 1990-01-15)
Categoricity over P for first order T or categoricity for phi in L_{omega_1 omega} can stop at aleph_k while holding for aleph_0, ..., aleph_{k-1}