arXiv Analytics

Sign in

arXiv:2308.05065 [math.MG]AbstractReferencesReviewsResources

Isometric rigidity of Wasserstein spaces over Euclidean spheres

György Pál Gehér, Aranka Hrušková, Tamás Titkos, Dániel Virosztek

Published 2023-08-09Version 1

We study the structure of isometries of the quadratic Wasserstein space $\mathcal{W}_2\left(\mathbb{S}^n,\varrho_{\|\cdot\|}\right)$ over the sphere endowed with the distance inherited from the norm of $\mathbb{R}^{n+1}$. We prove that $\mathcal{W}_2\left(\mathbb{S}^n,\varrho_{\|\cdot\|}\right)$ is isometrically rigid, meaning that its isometry group is isomorphic to that of $\left(\mathbb{S}^n,\varrho_{\|\cdot\|}\right)$. This is in striking contrast to the non-rigidity of its ambient space $\mathcal{W}_2\left(\mathbb{R}^{n+1},\varrho_{\|\cdot\|}\right)$ but in line with the rigidity of the geodesic space $\mathcal{W}_2\left(\mathbb{S}^n,\sphericalangle\right)$. One of the key steps of the proof is the use of mean squared error functions to mimic displacement interpolation in $\mathcal{W}_2\left(\mathbb{S}^n,\varrho_{\|\cdot\|}\right)$. A major difficulty in proving rigidity for quadratic Wasserstein spaces is that one cannot use the Wasserstein potential technique. To illustrate its general power, we use it to prove the isometric rigidity of $\mathcal{W}_p\left(\mathbb{S}^1, \varrho_{\|\cdot\|}\right)$ for $1 \leq p<2.$

Related articles: Most relevant | Search more
arXiv:2203.04054 [math.MG] (Published 2022-03-08)
Isometric rigidity of Wasserstein tori and spheres
arXiv:2102.02037 [math.MG] (Published 2021-02-03)
The isometry group of Wasserstein spaces: the Hilbertian case
arXiv:2411.07051 [math.MG] (Published 2024-11-11)
Isometric rigidity of the Wasserstein space over the plane with the maximum metric