arXiv:2308.01026 [math-ph]AbstractReferencesReviewsResources
Lorentzian bordisms in algebraic quantum field theory
Severin Bunk, James MacManus, Alexander Schenkel
Published 2023-08-02Version 1
It is shown that every algebraic quantum field theory has an underlying functorial field theory which is defined on a suitable globally hyperbolic Lorentzian bordism pseudo-category. This means that globally hyperbolic Lorentzian bordisms between Cauchy surfaces arise naturally in the context of algebraic quantum field theory. The underlying functorial field theory encodes the time evolution of the original theory, but not its spatially local structure. As an illustrative application of these results, the algebraic and functorial descriptions of a free scalar quantum field are compared in detail.
Comments: 34 pages
Related articles: Most relevant | Search more
arXiv:1903.03396 [math-ph] (Published 2019-03-08)
Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds
arXiv:1712.06686 [math-ph] (Published 2017-12-18)
Algebraic quantum field theory on spacetimes with timelike boundary
arXiv:1709.08657 [math-ph] (Published 2017-09-25)
Operads for algebraic quantum field theory