arXiv Analytics

Sign in

arXiv:2307.12252 [math.PR]AbstractReferencesReviewsResources

Fractional Generalizations of the Compound Poisson Process

Neha Gupta, Aditya Maheshwari

Published 2023-07-23Version 1

This paper introduces the Generalized Fractional Compound Poisson Process (GFCPP), which claims to be a unified fractional version of the compound Poisson process (CPP) that encompasses existing variations as special cases. We derive its distributional properties, generalized fractional differential equations, and martingale properties. Some results related to the governing differential equation about the special cases of jump distributions, including exponential, Mittag-Leffler, Bernst\'ein, discrete uniform, truncated geometric, and discrete logarithm. Some of processes in the literature such as the fractional Poisson process of order $k$, P\'olya-Aeppli process of order $k$, and fractional negative binomial process becomes the special case of the GFCPP. Classification based on arrivals by time-changing the compound Poisson process by the inverse tempered and the inverse of inverse Gaussian subordinators are studied. Finally, we present the simulation of the sample paths of the above-mentioned processes.

Related articles: Most relevant | Search more
arXiv:1007.5051 [math.PR] (Published 2010-07-28, updated 2011-02-23)
The fractional Poisson process and the inverse stable subordinator
arXiv:2304.10487 [math.PR] (Published 2023-04-20)
Generalized Fractional Negative Binomial Process
arXiv:2409.07044 [math.PR] (Published 2024-09-11)
Tempered space-time fractional negative binomial process