arXiv:2307.10539 [math.CO]AbstractReferencesReviewsResources
Induced log-concavity of equivariant matroid invariants
Alice L. L. Gao, Ethan Y. H. Li, Matthew H. Y. Xie, Arthur L. B. Yang, Zhong-Xue Zhang
Published 2023-07-20Version 1
Inspired by the notion of equivariant log-concavity, we introduce the concept of induced log-concavity for a sequence of representations of a finite group. For an equivariant matroid equipped with a symmetric group action or a finite general linear group action, we transform the problem of proving the induced log-concavity of matroid invariants to that of proving the Schur positivity of symmetric functions. We prove the induced log-concavity of the equivariant Kazhdan-Lusztig polynomials of $q$-niform matroids equipped with the action of a finite general linear group, as well as that of the equivariant Kazhdan-Lusztig polynomials of uniform matroids equipped with the action of a symmetric group. As a consequence of the former, we obtain the log-concavity of Kazhdan-Lusztig polynomials of $q$-niform matroids, thus providing further positive evidence for Elias, Proudfoot and Wakefield's log-concavity conjecture on the matroid Kazhdan-Lusztig polynomials. From the latter we obtain the log-concavity of Kazhdan-Lusztig polynomials of uniform matroids, which was recently proved by Xie and Zhang by using a computer algebra approach. We also establish the induced log-concavity of the equivariant characteristic polynomials and the equivariant inverse Kazhdan-Lusztig polynomials for $q$-niform matroids and uniform matroids.