arXiv Analytics

Sign in

arXiv:2306.14946 [astro-ph.HE]AbstractReferencesReviewsResources

Hourslong Near-UV/Optical Emission from Mildly Relativistic Outflows in Black Hole-Neutron Star Mergers

Ore Gottlieb, Danat Issa, Jonatan Jacquemin-Ide, Matthew Liska, Alexander Tchekhovskoy, Francois Foucart, Daniel Kasen, Rosalba Perna, Eliot Quataert, Brian D. Metzger

Published 2023-06-26Version 1

The ongoing LIGO-Virgo-KAGRA observing run O4 provides an opportunity to discover new multi-messenger events, including binary neutron star (BNS) mergers such as GW170817, and the highly anticipated first detection of a multi-messenger black hole-neutron star (BH-NS) merger. While BNS mergers were predicted to exhibit early optical emission from mildly-relativistic outflows, it has remained uncertain whether the BH-NS merger ejecta provides the conditions for similar signals to emerge. We present the first modeling of early near-ultraviolet/optical emission from mildly-relativistic outflows in BH-NS mergers. Adopting optimal binary properties, mass ratio of $q=2$ and rapidly rotating BH, we utilize numerical-relativity and general-relativistic magnetohydrodynamic (GRMHD) simulations to follow the binary's evolution from the pre-merger to homologous expansion. We use an M1 neutrino transport GRMHD simulation to self-consistently estimate the opacity distribution in the outflows, and find a bright near-ultraviolet/optical signal that emerges due to jet-powered cocoon cooling emission, outshining the kilonova emission at early time. The signal peaks at an absolute magnitude of $-14$ to $-15$ a few hours after the merger, longer than previous estimates, which did not consider the first-principles-based jet launching. By late 2024, the Rubin Observatory will have the capability to track the entire signal evolution, or detect its peak up to distances $\gtrsim1$ Gpc. In 2026, ULTRASAT will conduct all-sky surveys within minutes, detecting some of these events within $ \sim 200 $ Mpc. BH-NS mergers with higher mass ratios or lower BH spins would produce shorter and fainter signals.

Related articles: Most relevant | Search more
arXiv:2003.06733 [astro-ph.HE] (Published 2020-03-15)
Kilonova Emission From Black Hole-Neutron Star Mergers. I. Viewing-Angle-Dependent Lightcurves
Jin-Ping Zhu et al.
arXiv:1007.4203 [astro-ph.HE] (Published 2010-07-23, updated 2011-01-06)
Black hole-neutron star mergers: effects of the orientation of the black hole spin
arXiv:1304.3384 [astro-ph.HE] (Published 2013-04-11, updated 2016-05-02)
Black Hole-Neutron Star Mergers with a Hot Nuclear Equation of State: Outflow and Neutrino-Cooled Disk for a Low-Mass, High-Spin Case