arXiv Analytics

Sign in

arXiv:2306.10680 [math.NT]AbstractReferencesReviewsResources

Explicit bounds for the Riemann zeta function and a new zero-free region

Chiara Bellotti

Published 2023-06-19Version 1

We prove that $|\zeta(\sigma+it)|\le 70.7 |t|^{4.438 (1-\sigma)^{3/2}}\log^{2/3}|t|$ for $1/2\le\sigma\le 1$ and $|t|\ge 3$. As a consequence, we improve the explicit zero-free region for $\zeta(s)$, showing that $\zeta(\sigma+it)$ has no zeros in the region $\sigma \geq 1-1 /\left(54.004(\log |t|)^{2 / 3}(\log \log |t|)^{1 / 3}\right)$ for $|t| \geq 3$ and asymptotically in the region $\sigma \geq 1-1 /\left(48.0718(\log |t|)^{2 / 3}(\log \log |t|)^{1 / 3}\right)$ for $|t|$ sufficiently large.

Related articles: Most relevant | Search more
arXiv:0812.1878 [math.NT] (Published 2008-12-10, updated 2010-04-09)
An elementary and real approach to values of the Riemann zeta function
arXiv:math/0612843 [math.NT] (Published 2006-12-29, updated 2008-01-23)
Lower order terms in the full moment conjecture for the Riemann zeta function
arXiv:1910.08209 [math.NT] (Published 2019-10-18)
Vinogradov's integral and bounds for the Riemann zeta function