arXiv Analytics

Sign in

arXiv:2306.10677 [math.NT]AbstractReferencesReviewsResources

Additive energy of polynomial images

B. Kerr, A. Mohammadi, I. E. Shparlinski

Published 2023-06-19Version 1

Given a monic polynomial $f(X)\in \mathbb{Z}_m[X]$ over a residue ring $\mathbb{Z}_m$ modulo an integer $m\ge 2$ and a discrete interval $\mathcal{I} = \{1, \ldots, H\}$ of $H \le m$ consecutive integers, considered as elements of $\mathbb{Z}_m$, we obtain a new upper bound for the additive energy of the set $f(\mathcal I)$, where $f(\mathcal I)$ denotes the image set $f(\mathcal I) = \{f(u):~u \in \mathcal I\}$. We give an application of our bounds to multiplicative character sums, improving some previous result of Shkredov and Shparlinski~(2018).

Related articles: Most relevant | Search more
arXiv:2105.06925 [math.NT] (Published 2021-05-14, updated 2022-05-04)
Additive energies on spheres
arXiv:1002.3357 [math.NT] (Published 2010-02-17, updated 2011-10-07)
Maximal ratio of coefficients of divisors and an upper bound for height for rational maps
arXiv:1709.00820 [math.NT] (Published 2017-09-04)
On the distribution of divisors of monic polynomial over function fields