arXiv Analytics

Sign in

arXiv:2306.09111 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Enhanced Sampling with Machine Learning: A Review

Shams Mehdi, Zachary Smith, Lukas Herron, Ziyue Zou, Pratyush Tiwary

Published 2023-06-15Version 1

Molecular dynamics (MD) enables the study of physical systems with excellent spatiotemporal resolution but suffers from severe time-scale limitations. To address this, enhanced sampling methods have been developed to improve exploration of configurational space. However, implementing these is challenging and requires domain expertise. In recent years, integration of machine learning (ML) techniques in different domains has shown promise, prompting their adoption in enhanced sampling as well. Although ML is often employed in various fields primarily due to its data-driven nature, its integration with enhanced sampling is more natural with many common underlying synergies. This review explores the merging of ML and enhanced MD by presenting different shared viewpoints. It offers a comprehensive overview of this rapidly evolving field, which can be difficult to stay updated on. We highlight successful strategies like dimensionality reduction, reinforcement learning, and flow-based methods. Finally, we discuss open problems at the exciting ML-enhanced MD interface.

Comments: Submitted as invited article to Annual Review of Physical Chemistry vol 75
Related articles: Most relevant | Search more
arXiv:1401.0387 [cond-mat.stat-mech] (Published 2014-01-02)
Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration
arXiv:2112.00489 [cond-mat.stat-mech] (Published 2021-12-01, updated 2022-05-31)
Machine learning of pair-contact process with diffusion
arXiv:0910.4914 [cond-mat.stat-mech] (Published 2009-10-26, updated 2010-04-13)
Enhanced Sampling in the Well-Tempered Ensemble