arXiv Analytics

Sign in

arXiv:2304.08145 [math.CO]AbstractReferencesReviewsResources

Inductive and divisional posets

Roberto Pagaria, Maddalena Pismataro, Tan Nhat Tran, Lorenzo Vecchi

Published 2023-04-17Version 1

We call a poset factorable if its characteristic polynomial has all positive integer roots. Inspired by inductive and divisional freeness of a central hyperplane arrangement, we introduce and study the notion of inductive posets and their superclass of divisional posets. It then motivates us to define the so-called inductive and divisional abelian (Lie group) arrangements, whose posets of layers serve as the main examples of our posets. Our first main result is that every divisional poset is factorable. Our second main result shows that the class of inductive posets contains strictly supersolvable posets, the notion recently introduced due to Bibby and Delucchi (2022). This result can be regarded as an extension of a classical result due to Jambu and Terao (1984), which asserts that every supersolvable hyperplane arrangement is inductively free. Our third main result is an application to toric arrangements, which states that the toric arrangement defined by an arbitrary ideal of a root system of type $A$, $B$ or $C$ with respect to the root lattice is inductive.

Related articles: Most relevant | Search more
arXiv:1112.5041 [math.CO] (Published 2011-12-21, updated 2013-03-26)
Minimality of toric arrangements
arXiv:1708.06646 [math.CO] (Published 2017-08-22)
Computing the poset of layers of a toric arrangement
arXiv:0911.4823 [math.CO] (Published 2009-11-25, updated 2010-11-09)
A Tutte polynomial for toric arrangements